
ETMAG 
LECTURE 15 

• Systems of Equations - Cramer's Rule 

• Inverse matrix 

• Eigenvalues, eigenvectors 
 



Determinant and systems of linear equations 

Theorem. (Uniqueness theorem) 

A system of n linear equations with n unknowns 

(∗)

𝑎1,1𝑥1 + 𝑎1,2𝑥2 + … + 𝑎1,𝑛𝑥𝑛 = 𝑏1 

 𝑎2,1𝑥1 + 𝑎2,2𝑥2 + … + 𝑎2,𝑛𝑥𝑛 = 𝑏2 
. . . 

  𝑎𝑛,1𝑥1 + 𝑎𝑛,2𝑥2 + …+ 𝑎𝑛,𝑛𝑥𝑛 = 𝑏𝑛

 

has a unique solution iff det(𝐴) ≠ 0 

Proof. 

It follows from the fact that the corresponding homogeneous 
system has unique solution Θ iff rank(𝐴)=n which, in turn is 
equivalent to det(𝐴)≠ 0. Then, if (and that's a big IF) v0 is a 
solution then all solutions v of (∗) look like v =  Θ + v0 = v0. 



Warning. 

The uniqueness theorem is a "both ways" implication but is often 
misunderstood. The conclusion should be understood as "the set of 
solutions of (∗) has exactly one element". Hence the negation of 
this is (contrary to what many people believe) not 

"if det 𝐴 = 0 then (∗) it is not true that (∗) has a solution" 

but rather (remember de Morgan's Law!) 

"if det 𝐴 = 0 then it is not true that the set of solutions of (∗) has 
exactly one element" (which means either none or more than one). 

Look at this: 

 
𝑥 + 𝑦 = 2
2𝑥 + 2𝑦 = 4

 det 
1 2
2 4

 = 4−4 = 0 but the system has infinitely 

many solutions of the form 𝑡, 2 − 𝑡  where t is any real number. 



Theorem. (Cramer's Rule) 
Let 𝐴 be an nn matrix with det(𝐴)≠ 0 and let 𝐵 be any n1 
matrix. Then the system of equations 𝐴𝑋 = 𝐵 has unique 
solution 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛 ]

T and for each 𝑖 = 1,2,… , 𝑛 

𝑥𝑖 = 
𝑑𝑒𝑡𝐴𝑖

𝑑𝑒𝑡𝐴
 ,  

where 𝐴𝑖 is obtained by replacing the 𝑖-th column of 𝐴 with 𝐵. 
Proof (skipped). 



Example.  

 

  2x + 4y −  z = 11    

−4x − 3y + 3z = − 20  

2x + 4y+2z = 2 

 |A| = 

2 4 −1
−4 −3 3
2 4 2

= −12+16+24 −6 −24+32=30, 

 

|𝐴1| = 
11 4 −1
−20 −3 3
2 4 2

 = −66+80+24 −6 −132+160=264 − 204 = 60, x = 2 

 

|𝐴2| = 

2 11 −1
−4 −20 3
2 2 2

 = −80+8+66 −40 −12+88 = 162−132 = 30, y = 1 

 

|𝐴3| = 
2 4 11
−4 −3 −20
2 4 2

 = −12−160−176+66+160+32 = 258−348 = −90, z = −3 



Definition. (Inverse matrix) 
Let 𝐴 be an nn matrix. If there exists a matrix 𝐴−1 such that  

𝐴𝐴−1= 𝐴−1𝐴 = 𝐼  then 𝐴−1 is called the inverse (matrix) of 𝐴. 

 

Fact. The inverse matrix for A, if it exists, is unique. 

This follows from the very general fact the in every associative 
algebra the inverse element, if there is one, is unique.  



Theorem. 
A matrix is 𝐴 invertible iff det 𝐴 ≠ 0. 

 

Proof.(⇒) 

If 𝐴−1 exists, then det 𝐴𝐴−1 = det 𝐼 = 1 = det 𝐴 det (𝐴−1) 
hence both det 𝐴  and det (𝐴−1) are different from zero. 

 
(⇐) 

If det 𝐴 ≠ 0 then, from the uniqueness theorem for nn systems 

of equations, for every n1 matrix 𝐵 there exists a (unique) 

solution of the system 𝐴𝑋 = 𝐵. Replacing 𝐵 with consecutive 

columns of the identity matrix I we get the existence of the 

corresponding columns of the inverse matrix which in turn 

proves the existence of the inverse matrix itself. 



To  be more specific:    

   𝐴−1 =  𝑋 = 

𝑥1,1 𝑥1,2 … 𝑥1,𝑛
𝑥2,1 𝑥2,2 … 𝑥2,𝑛
⋮ ⋮ … ⋮

𝑥𝑛,1 𝑥𝑛,2 … 𝑥𝑛,𝑛

 

𝐴 =

𝑎1,1 𝑎1,2 … 𝑎1,𝑛
𝑎2,1 𝑎2,2 … 𝑎2,𝑛
⋮ ⋮ … ⋮

𝑎𝑛,1 𝑎𝑛,2 … 𝑎𝑛,𝑛

  

1       0 …      0
0       1 …      0
⋮       ⋮ …      ⋮
0       0 …      1

   = 𝐼 

Consider 

𝑎1,1 𝑎1,2 … 𝑎1,𝑛
𝑎2,1 𝑎2,2 … 𝑎2,𝑛
⋮ ⋮ … ⋮

𝑎𝑛,1 𝑎𝑛,2 … 𝑎𝑛,𝑛

𝑥1,1
𝑥2,1
⋮

𝑥𝑛,1

=

1
0
⋮
0

. The system is 

uniquely solvable and the solution, 𝑋1 is the first column of 𝐴−1. 

The same can be said about the second, third and each next 

column of 𝑋 and 𝐼. QED 



The proof suggests a method (two methods, really) for finding 
𝐴−1 (doing proofs makes sense): 

Method 1. 

Row-reduce the following matrix to a row-canonical one 

[𝐴|𝐼] = 

𝑎1,1 𝑎1,2 … 𝑎1,𝑛 1 0 … 0

𝑎2,1 𝑎2,2 … 𝑎2,𝑛 0 1 … 0

⋮ ⋮ … ⋮ ⋮ ⋮ … ⋮
𝑎𝑛,1 𝑎𝑛,2 … 𝑎𝑛,𝑛 0 0 … 1

  ~ …~… ~ …~ 

~…~

1 0 … 0 𝑥1,1 𝑥1,2 … 𝑥1,𝑛
0 1 … 0 𝑥2,1 𝑥2,2 … 𝑥2,𝑛
⋮ ⋮ … ⋮ ⋮ ⋮ … ⋮
0 0 … 1 𝑥𝑛,1 𝑥𝑛,2 … 𝑥𝑛,𝑛

  = [𝐼|𝐴−1] 

This is always possible if A is invertible. It proves that 𝐴 is 

invertible iff it may be row-reduced to the identity matrix 𝐼. 



Method 2. 

Using Cramer's rule to calculate each 𝑥𝑖,𝑗 of 𝐴−1. 

This method involves calculation of det(𝐴) and 𝑛2 determinants 

of the size (𝑛 − 1) × (𝑛 − 1). For large matrices it takes forever. 

𝑥𝑖,𝑗 appears in j-th column of 𝐴−1 which means must consider  

𝑎1,1 𝑎1,2 … 𝑎1,𝑛
𝑎2,1 𝑎2,2 … 𝑎2,𝑛
⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮

𝑎𝑛,1 𝑎𝑛,2 … 𝑎𝑛,𝑛

𝑥1,𝑗
⋮
𝑥𝑖,𝑗
⋮

𝑥𝑛,𝑗

=

0
⋮
1
⋮
0

 = Ij where the solitary 1 in 𝐼𝑗 

is in the j-th position. So, in order to find the i-th unknown we 

need divide the determinant of 𝐴𝑖,𝑗
∗  (𝐴 with i-th column replaced 

by 𝐼𝑗) by det (𝐴). 



𝑑𝑒𝑡𝐴𝑖,𝑗
∗  = 𝑑𝑒𝑡

a1,1 … 0 … a1,𝑛
⋮ ⋮ ⋮
a𝑗,1 … 1 … a𝑗,𝑛
⋮ ⋮ … ⋮

a𝑛,1 0 … a𝑛,𝑛

 

If you do this determinant by i-th column, the only nonzero term 

in the Laplace expansion will be −1 𝑖+𝑗 times the determinant 

obtained by the removal of j-th row and i-th column from 𝐴𝑖,𝑗
∗ . 

Here is the funny thing: 𝐴 and 𝐴𝑖,𝑗
∗  only differ on the i-th column, 

which is being removed. Hence 𝑑𝑒𝑡𝐴𝑖,𝑗
∗  = −1 𝑖+𝑗𝑑𝑒𝑡𝐴𝑗,𝑖 and, 

finally, 𝑥𝑖,𝑗 =
−1 𝑖+𝑗𝑑𝑒𝑡𝐴𝑗,𝑖

𝑑𝑒𝑡𝐴
. In other words 

𝐴−1 =
1

𝑑𝑒𝑡𝐴
−1 𝑖+𝑗𝑑𝑒𝑡𝐴𝑖,𝑗

𝑇
 

   

in j-th row and i-th 
column of 𝐴𝑖,𝑗

∗  



Example. 

𝐴 =

0 2 1 1
1 1 2 0
2 1 0 0
1 3 4 1

. Find 𝐴−1. 

Method 1. (Gauss elimination). Notice and remember the strategy used: 

Step one: get number 1 in the upper left corner  

0 2 1 1 1 0 0 0
1 1 2 0 0 1 0 0
2 1 0 0 0 0 1 0
1 3 4 1 0 0 0 1

 

𝑟4 − 𝑟2
𝑟3 − 2𝑟2
𝑟1 ↔ 𝑟2

 

1 1 2 0 0 1 0 0
0 2 1 1 1 0 0 0
0 −1 −4 0 0 −2 1 0
0 2 2 1 0 −1 0 1

  

 

𝑟2 + 2𝑟3
𝑟1 + 𝑟3
𝑟4 + 2𝑟3

 

1 0 −2 0 0 −1 1 0
0 0 −7 1 1 −4 2 0
0 −1 −4 0 0 −2 1 0
0 0 1 0 −1 −1 0 1

        
𝑟1 + 2𝑟4
𝑟2 + 7𝑟4
𝑟3 + 4𝑟4

 

1 0 0 0 −2 −3 1 2
0 0 0 1 −6 −11 2 7
0 −1 0 0 −4 −6 1 4
0 0 1 0 −1 −1 0 1

 

𝑟3 ↔ 𝑟2
𝑟4 ↔ 𝑟′2

1 0 0 0 −2 −3 1 2
0 −1 0 0 −4 −6 1 4
0 0 1 0 −1 −1 0 1
0 0 0 1 −6 −11 2 7

 

~ −1 𝑟2  

1 0 0 0 −2 −3 1 2
0 1 0 0 4 6 −1 −4
0 0 1 0 −1 −1 0 1
0 0 0 1 −6 −11 2 7

 so, 𝐴−1 =

−2 −3 1 2
4 6 −1 −4
−1 −1 0 1
−6 −11 2 7

 



Method 2. (Cramer's Rule, cofactors) 

det 𝐴 = 1 (we are cheating, we derive this from method 1. Only the 
operation −1 𝑟2 and three row-swaps in the previous slide affected 
the determinant. Scaling a row by (-1) and each row-swap changes 
the sign of the determinant.) 

Let's calculate just a single entry of 𝐴−1, say 𝐴−1(2,3). According 

to the cofactor theorem 𝐴−1(2,3) = 
1

𝑑𝑒𝑡𝐴
−1 2+3 det 𝐴3,2 = − 

det 𝐴3,2 . 

det (𝐴3,2) = 

0 2 1 1
1 1 2 0
2 1 0 0
1 3 4 1

 = 
0 1 1
1 2 0
1 4 1

 = 4 − 2 − 1 = 1 which 

means, 𝐴−1[2,3] should be −1. We move back one slide and … 

surprise, surprise! it checks. And now you only have to calculate 

the remaining 15 entries of  𝐴−1 



Example 2. (Cramer's Rule, cofactors, 3×3 matrix) 

𝐴 =
−2 1 3
4 −2 −5
−1 1 1

, find 𝐴−1. First, we find |A| =  4 + 12 + 5 −

6 − 10 − 4 = 1. Next transpose the matrix of cofactors 

𝐴−1=

−2 −5
1 1

−
4 −5
−1 1

4 −2
−1 1

−
1 3
1 1

−2 3
−1 1

−
−2 1
−1 1

1 3
−2 −5

−
−2 3
4 −5

−2 1
4 −2

𝑇

=
3 1 2
2 1 1
1 2 0

𝑇

=

3 2 1
1 1 2
2 1 0

. Please, check this result by matrix multiplication. 



EIGENVALUES AND EIGENVECTORS 

Definition. 
Let 𝐴 be an 𝑛 × 𝑛 matrix over 𝕂. Every scalar 𝜆 such that for a 
nonzero vector 𝑋𝜆 from 𝕂𝑛, 𝐴𝑋𝜆 = 𝜆𝑋𝜆 is called an eigenvalue of 
𝐴 and each 𝑋𝜆 is called an eigenvector belonging to 𝜆. 

 

These things have a wide range of applications, from differential 
equations, through big data systems, through graph theory. 



Example.  

Find eigenvalues of A =
0 −1 2
−2 −1 4
−2 −2 5

.  

This is equivalent to discussing in terms of 𝜆 the existence of 

nonzero vector [a,b,c] and such that  

 
0𝑎 − 𝑏 + 2𝑐 = 𝜆𝑎
−2𝑎 − 𝑏 + 4𝑐 = 𝜆𝑏 
−2𝑎 − 2𝑏 + 5𝑐 = 𝜆𝑐

. Moving right-hand side to the left we get 

 
−𝜆𝑎            − 𝑏    +       2𝑐 = 0
−2𝑎   + −1 − 𝜆 𝑏 + 4𝑐 = 0 
−2𝑎 −  2𝑏     +   (5 − 𝜆)𝑐 = 0

. We are looking for nonzero 

solutions to this homogeneous system of equations. They exist iff 

the dimension of the solution space is nonzero, which means the 

rank of the coefficient matrix is less than 3, which in turn means 

the determinant of the matrix is 0. 



−𝜆 −1 2
−2 −1 − 𝜆 4
−2 −2 5 − 𝜆

=
𝑟3 − 𝑟2

 

−𝜆 −1 2
−2 −1 − 𝜆 4
0 −1 + 𝜆 1 − 𝜆

  
=

 𝑡𝑎𝑘𝑒 𝑜𝑢𝑡 𝑐𝑜𝑚𝑚𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓𝑟𝑜𝑚 𝑟3
 

(1 − 𝜆)
−𝜆 −1 2
−2 −1 − 𝜆 4
0 −1 1

 
=

𝑐2 + 𝑐3
 

(1 − 𝜆)
−𝜆 1 2
−2 3 − 𝜆 4
0 0 1

 = (1 − 𝜆)
−𝜆 1
−2 3 − 𝜆

 
=

𝑟2 − 𝑟1
 

(1 − 𝜆)
−𝜆 1
𝜆 − 2 2 − 𝜆

 = (1 − 𝜆)(2 − 𝜆)
−𝜆 1
−1 1

 =  

1 − 𝜆 2(2 − 𝜆) = 0. Hence, 𝜆1 = 𝜆2 = 1 and 𝜆3 = 2. 



This example can be easily generalized to  

Theorem. 
A scalar 𝜆  is an eigenvalue for 𝐴 iff det(𝐴 − 𝜆I) = 0. 

Proof. Just as we did in the example, instead of 𝐴𝑋= 𝜆𝑋we can 
write 𝐴𝑋= (𝜆𝐼)𝑋which leads to (𝐴 − 𝜆𝐼)𝑋 = Θ. Nonzero 
solutions to an 𝑛 × 𝑛 homogeneous system of equations exist iff 
the determinant of the coefficient matrix is zero. 

 
Fact. 
For every eigenvalue 𝜆 of 𝐴 the set 𝑊𝜆 = {𝑋 ∈ 𝕂𝑛|𝐴𝑋 = 𝜆𝑋} is a 
subspace in 𝕂𝑛. The subspace is called an eigenspace for 𝜆. 

Proof. 𝑊𝜆 is the solution space for (A−𝜆𝐼)𝑋 = Θ. 

 

We are on familiar grounds now, we can solve homogeneous 
systems of equations. We have to do it separately for each 
eigenvalue, though.  



Example - continued. Knowing that the eigenvalues are 𝜆1, 

𝜆2 = 1 and 𝜆3 = 2 find eigenvectors of A =
0 −1 2
−2 −1 4
−2 −2 5

 and 

the dimension of each eigenspace. 

For 𝜆=1 our system of equations is reduced to 
−1 −1 2
−2 −2 4
−2 −2 4

𝑎
𝑏
𝑐

=
0
0
0

. Since 𝑟3 = 𝑟2 and 𝑟2 = 2𝑟1 the rank of 

the matrix system is 1 and the system is equivalent to −𝑎 − 𝑏 +
2𝑐 = 0 which means a=−𝑏 + 2𝑐 and b,c run free. So all 

eigenvectors for 𝜆=1 look like (−𝑏 + 2𝑐, 𝑏, 𝑐) = 𝑏 −1,1,0 +

𝑐(2,0,1) so dim 𝑊𝜆1 = 2. 

For 𝜆=2 we get 
−2 −1 2
−2 −3 4
−2 −2 3

𝑎
𝑏
𝑐

=
0
0
0

. Row reducing the 

matrix we get 



−2 −1 2
−2 −3 4
−2 −2 3

~
𝑟2 − 𝑟1, 𝑟3 − 𝑟1

 
−2 −1 2
0 −2 2
0 −1 1

 
~

𝑟1 − 𝑟3, 𝑟2 − 2𝑟3
 

−2 0 1
0 0 0
0 −1 1

~ 
1 0 −

1

2
 

0 1 −1
0 0 0

. The rank is 2, dimension of the 

solution space is 1. We get a −
1

2
c=0 and b-c=0, i.e. a= 

1

2
c and 

b=c and eigenvectors are (
1

2
c,c,c), for all c≠ 0, or, for example, 

t(1,2,2) for all nonzero t ∈ ℝ. Hence dim 𝑊𝜆2 = 1.  



Definition. 

An n×n matrix A is said to be similar to B iff there exists a matrix P 

such that 𝐴 = 𝑃−1𝐵𝑃. We write 𝐴 ≈ 𝐵. 

Note that similarity should not be confused with  row equivalence. 

Fact. 

Similarity of matrices is an equivalence relation on the set 𝕂𝑛×𝑛. 

Fact. 

Suppose 𝐴 ≈ 𝐵 with 𝐴 = 𝑃−1𝐵𝑃. Then  

1. det 𝐴 = det (𝐵)  (obvious) 

2. for every 𝑛 ∈ ℕ, 𝐴𝑛 = 𝑃−1𝐵𝑛𝑃  (obvious) 

3. det 𝐴 − 𝜆𝐼 = det 𝐵 − 𝜆𝐼 . 

4. A and B have the same eigenvalues. (consequence of 3.) 

Proof (3). 𝐴 − 𝜆𝐼 = 𝑃−1𝐵𝑃 − 𝜆𝐼 = 𝑃−1𝐵𝑃 − 𝜆𝑃−1𝐼𝑃 = 

𝑃−1 𝐵 − 𝜆𝐼 P hence 𝐴 − 𝜆𝐼 ≈ 𝐵 − 𝜆𝐼 so, by 1., their determinants 

are equal. 



Theorem. 

An n×n matrix A is similar to a diagonal matrix  

D = 

a1 0 … 0
0 a2 … 0

⋮ ⋮ ⋮
⋮ ⋮ ⋮
0 0 … a𝑛

  

iff the diagonal entries 𝑎1, 𝑎2, … , 𝑎𝑛 are eigenvalues of A and there 

exists a basis R={𝑣1, 𝑣2, … , 𝑣𝑛} for 𝕂𝑛 such that for each i=1,2,…,n 

vi is an eigenvalue belonging to 𝑎𝑖. In such a case, if we write  

D = 𝑃−1𝐴𝑃 then columns of P are (vertical) vectors 𝑣1, 𝑣2, … , 𝑣𝑛. 

This is to say that if we decide to express similarity of the two 

matrices in the form 𝐴 = 𝑅−1𝐷𝑅 then 𝑅−1 has vectors 𝑣1, 𝑣2, … , 𝑣𝑛 

as columns. 



Example - continued.  

The last theorem says that our matrix from the last example, 

 A =
0 −1 2
−2 −1 4
−2 −2 5

 is similar to  D =
1 0 0
0 1 0
0 0 2

 and the 

change-of-basis        P =
−1 2 1
1 0 2
0 1 2

 
−1 2 2
1 0 4
0 1 4

 

  A =
0 −1 2
−2 −1 4
−2 −2 5

−1 2 2
1 0 4
0 1 4

  Checks! 


